
Online Bagging and Boosting 
Nikunj C. Oza 

Intelligent Systems Division 
NASA Ames Research Center 

Mail Stop 269-3 
Moffett Field, CA, USA 

oza@email.arc.nasa.gov 

Abstract  - Bagging and boosting are two of the most 
well-known ensemble learning methods due to their 
theoretical performance guarantees and strong 
experimental results. However, these algorithms have been 
used mainly in batch mode, i.e., they require the entire 
training set to be available at once and, in some cases, 
require random access to the data. In this paper, we 
present oniine versions of bagging and boosting that 
require only one pass through the training data. We build 
on previously presented work by presenting some 
theoretical results. We also compare the online and batch 
algorithms experimentally in terms of accuracy and 
running time. 

Keywords: Bagging, boosting, ensemble learning, online 
learning. 

1 Introduction 
Traditional supervised learning algorithms generate a 

single model such as a Na'ive Bayes classifier or multilayer 
perceptron (MLP) and use it to classify examples.' 
Ensemble learning algorithms combine the predictions of 
multiple base models, each of which is lea ied  usiiig a 
traditional algorithm. Bagging [3] and Boosting [4] are 
well-known ensemble learning algorithms that have been 
shown to be very effective in improving generalization 
performance compared to the individual base models. 
Theoretical analysis of boosting's performance supports 
these results [4]. 

In previous work [ 1][2], we developed onZine versions 
of bagging and boosting. Online learning algorithms 
process each training example once "on arrival'' without 
the need for storage and reprocessing, and maintain a 
current model that reflects all the training examples seen SO 

far. Such algorithms have advantages over typical batch 
algorithms in situations where data arrive continuously. 
They are also usem with very large data sets on secondary 
storage, for which the multiple passes through the training 
set required by most batch algorithms are prohibitively 
expensive. In Sections 2 and 3, we describe our online 
bagging and online boosting algorithms, respectively. In 
particular, we describe how we mirror the methods that the 
batch bagging and boosting algorithms use to generate 

1 In this paper, we only deal with the classification 
problem. 

distinct base 
performance. 

In our 
preliminary 

models, which are known to help ensemble 

previous work, we also discussed some 
theoretical results and some empirical 

comparisons of the classification accuracies of our -online 
algorithms and the corresponding batch algorithms on 
many datasets of varying size. In Sections 2 and 3, we give 
a brief description of some additionai theoretical resuits. in 
Section 4, we review the experimental results in our 
previous work demonstrating the performance of our online 
algorithms relative to their batch counterparts. In this 
paper, we expand upon these results by comparing and 
studying their running times. We run our online bagging 
and boosting algorithms with two different base models: 
Nai've Bayes classifiers and MLPs. We use a lossless 
online learning algorithm for Na'ive Bayes classifiers. For a 
given training set, a lossless online learning algorithm 
returns a model identical to that returned by the 
corresponding batch algorithm. For MLPs, we are forced to 
use a lossy online learning algorithm. In particular, we do 
not allow the MLP's backpropagation algorithm to cycle 
through the training set in multiple epochs the way 
backpropagation is normally allowed to do. Overall, our 
online bagging and boosting algorithms perform 
comparably to their batch counterparts in terms of 
classification accuracy when using Na'ive Bayes base 
models. The loss experienced by online MLPs relative to 
batch MLPs leads to a significant loss for online bagging 
and boosting relative to the batch versions. Online bagging 
often does improve significantly upon online MLPs; 
however, online boosting never performed sigificantly 
better than single online MLPs. We also compare the 
running times of the batch and online algorithms. If the 
online base model learning algorithm is not significantly 
slower than the corresponding batch algorithm, then the 
bagging and online bagging algorithms do not have a large 
difference in their running time in our tests. On the other 
hand, our online boosting algorithm runs significantly 
faster than batch boosting. For example, on our largest 
dataset, batch boosting ran twice as long as online 
boosting to achieve comparable classification accuracy. 

2 Online Bagging 
Given a training dataset T of size N ,  standard batch 

bagging creates M base models. Each model is trained by 
calling the batch learning algorithm Lb on a bootstrap 
sample of size N created by drawing random samples with 



replacement from the original training set. Figure 1 gives 
the pseudocode for bagging. 

Bagging(T,Lb > M> 
For each rn E {1,2,. . ., M},  

T, = Sample-With-RepIacement(T,Iq) 

htn = Lb(Tm) 

Return {hl,h2,.  . .,h,} 

Figure 1: Bagging Algorithm 

Each base model's training set contains K copies of 
each of the original training examples where 

N - k  P (  K = k )  = ( N 1  )( -Y( 1 - $) 
k N  

which is the Binomial distribution. As N + 00, the 
distribution of K tends to a Poisson(1) distribution: 
P(K = k )  - exp(-l)/k!. As discussed in [ l ]  [2], we can 
perform bagging online as follows: as each training 
example d=(x,y) is presented to our algorithm, for each 
base model, choose the example K - Poisson(1) times 
and update the base model accordingly using the online 
base model learning algorithm Lo (see Figure 2 ) .  New 
examples are classified the same way in online and batch 
bagging-by unweighted voting of the A4 base models. 

OnlineBagging(h, Lo, d )  

For each base model h, E h,m E {1,2,. . . ,M} .  
Set k according to Poisson(1). 
Do k times 

Figure 2: Online Bagging Algorithm 

Online bagging is a good approximation to batch 
bagging to the extent that their base model learning 
algorithms produce similar models when trained with 
similar distributions of training examples. In past work 
[1 ] [5 ] ,  we proved that if the same original training set is 
supplied to the two bagging algorithms, then the 
distributions over the training sets supplied to the base 
models in batch and online bagging converge as the size of 
that original training set grows to infinity. We have also 
proven that the classifiers returned by bagging and online 
bagging converge to the same classifier given the same 
training set as the number of models and training examples 
tends to infinity under two conditions. The first is that the 
base model learning algorithms return classifiers that 

training examples grows. The second is that, given a fixed 
training set T, the online and batch base model learning 
algorithms return the same classifier for any number of 
copies of T that are presented to the learning algorithm. For 
example, doubling the training set by repeating every 
example in T yields the same classifier as T would yield. 
For example, this condition is true of decision trees and 
NaYve Bayes classifiers, but is not true of MLPs, since 
doubling the training set effectively doubles the number of 
epochs in backpropagation training. More formal details are 
presented in [ 5 ] .  

3 Online Boosting 
Our online boosting algorithm is designed to 

correspond to the batch boosting algorithm, AdaBo0st.M 1 
[4] (the pseudocode is given in Figure 3). AdaBoost 
generates a sequence of base models h,, h2,. . ., h, using 
weighted training sets (weighted by Dl,D2,. . . ,OM) such 
that the training examples misclassified by model hm-l are 
given half the total weight when generating model h, and 
the correctly classi.fied examples are given the remaining 
half of the weight. When the base model learning algorithm 
cannot learn with weighted training sets, one can generate 
samples with replacement according to D, 

AdaBoost({ ( xl,yl),( x 2 , y 2 ) 9 * *  *,( x N , y N ) ) , L b  9 M> 
Initialize D, ( n )  = 1 / N  for all n E {1,2,. . . , N}. 

For all rn E {1,2 ,..., M } ,  

N 

n-1 

If E, 2 1/2 then set M = m - 1 and abort loop. 

For all n E {1,2 ,..., N } ,  

Return h,, (x) = 

Figure 3: AdaBoost algorithm 

Our online boosting algorithm (Figure 4) simulates 
sampling with replacement using the Poisson distribution - -  

converge toward the same classifier as the number of just like online bagging does. The only difference is that 



when a base model misclassifies a training example, the 
Poisson distribution parameter d associated with that 
example is increased when presented to the next base 
model; otherwise it is decreased. Just as in AdaBoost, our 
algorithm gives the examples misclassified by one stage 
half the total weight in the next stage; the correctly 
classified examples are given the remaining half of the 
weight. This is done by keeping track of the total weights 
of each base model's correctly classified and misclassified 
training examples (xi and a:, respectively) and using 
these to update each base model's error E,,,. At this point, a 
training example's weight is updated the same way as in 
AdaBoost. 

One area of concern is that, in AdaBoost, an 
example's weight is adjusted based on the performance of a 
base model on the entire training set while in online 
boosting, the weight adjustment is based on the base 
model's performance only on the examples seen earlier. To 
see why this may be an issue, consider running AdaBoost 
and online boosting on a training set of size 10000. In 
AdaBoost, the first base model h, is trained on all 10000 
examples before being tested on, say, the tenth training 
example. In online boosting, h, is trained on only the first 
ten examples before being tested on the tenth example. 
Clearly, at the moment when the tenth training example is 
being tested, we may expect the two 4 ' s  to be very 
different; therefore, h, in AdaBoost and h, in online 
boosting may be presented with different weights for the 
tenth training example. This may, in turn, lead to different 
weights for the tenth example when generating h, in each 
algorithm, and so on. Intuitively, we want online boosting 
to get a good mix of training examples so that the base 
models and their normalized errors in online boosting 
quickly converge to what they are in AdaBoost. The more 
rapidly this convergence occurs, the more similar the 
training examples' weight adjustments will be and the more 
similar their performances will be. We have proven [5] that 
for Naive Bayes base models, the online and batch boosting 
algorithms converge to the same ciassifier as the number of 
models and training examples tends to infinity. 

4 Experimental Results 
In this section, we discuss results on several different 

datasets, whose names and numbers of training examples, 
test examples, inputs, and classes are given in Table 1. The 
Soybean-Large and Census Income datasets come with 
fixed training and test sets, which we use in our 
experiments. For the remaining datasets, we give the 
training and test set sizes that result kom using 5-fold 
cross-validation. We discuss the results on some small 
datasets to show that the online algorithms can often 
achieve performance comparable to batch algorithms even 
when given a small number of data points. We discuss 
results on several larger datasets in more detail since online 
algorithms are most useful for such datasets. All but three 
of the datasets were drawn fiom the UCI KDD repositoq 
[6]. The remaining three are synthetic datasets that were 

chosen because the performance of a single Naive Bayes 
classifier varies significantly across these three datasets. 
These datasets allow us to compare the performances of the 
online and batch ensemble algorithms on datasets of 
varying difficulty. 

Table 1 : The datasets used in our experiments. 

Data Set 

Promoters 
Balance 
Soybean-Large 
Breast Cancer 
Car 
Evaluation 
Chess 
Mushroom 
Nursery 
Connect4 
Synthetic-1 
Synthetic-2 
Synthetic-3 
Census Income 
Forest 
Cnvertvne 

Train 
Set 
84 
500 
307 
559 
800 

1382 
6499 
10368 
54045 
80000 
80000 
80000 
199523 
464809 

Test 
Set 
22 
125 
3 76 
140 
200 

346 
1625 
2592 
13512 
20000 
20000 
20000 
99762 
1 16203 

Input 

57 
4 
35' 
9 
20 

6 
22 
8 
42 
20 
20 
20 
39 
54 

Class 

2 
3 
19 
2 
2 

4 
2 
5 
3 
2 
2 
2 
2 
7 

4.1 Accuracy 

For both bagging and boosting, we present results 
using two' different base model types : Naive Bayes 
classifiers and multilayer perceptrons (MLPs). Both 
bagging algorithms generated 100 base models. Both 
boosting algorithms were allowed to generate up to 100 
base models. All the results shown are based on 10 runs of 
5-fold cross validation (except on the Soybean-Large and 
Census Income, where we used the supplied training and 
test sets). A!! the o n h e  algoiit,hms were r m  five Piles fcr 
every one time the batch algorithm was run, with different 
random orders of the training set. This was done to account 
for the effect that the order of the training examples can 
have on the performance of an online learning algorithm. 

Tables 2-5 show the results of online bagging and 
boosting compared to their batch counterparts and single 
base models using Naive Bayes classifiers and MLPs. The 
online MLP was trained by using backpropagation to 
update the MLP with each training example ten times upon 
arrival; however, the algorithm only ran through the entire 
training set once in the order in which it was presented. The 
batch MLP was trained by using backpropagation to update 
the MLP in ten epochs (ten cycles through the entire 
training set). All comparisons between algorithms were 
made using a paired t-test (a=0.05). 

Table 2 shows the results of running bagging with 
Naive Bayes classifiers. Entries in boldfacehtalics indicate 
that the ensemble algorithm performed significantly 
bettedworse than a single Naive Bayes classifier. The 
bagging algorithms performed comparably to each other and 
mostly performed comparably to the batch Naive Bayes 
algorithm. This is expected due to the stability of Naive 

a 



4 
0 

Bayes classifiers [3]. That is, the NaYve Bayes classifiers in 
a bagged ensemble tend to classify new examples the same 
way (we obtained at least 90% agreement on all test 
examples) in spite of the differences in the training sets. 

Initial conditions : For all m E {1,2,. . . , M}, 

x; = o , q  =o. 
OnlineBoosting(h,L,,( x, y )) 

S e t d = l .  

For each base model h, E h,m E {1,2,. . ., M ]  
Set k according to Poisson(d). 
Do k times 

h, = L,(hm9(AY>). 
If y = h,(x) 

x; - x; + A 

else 

end 
'0 classify a new example with input x, return 

Figure 4: Online Boosting Algorithm 

Table 3 shows the results of running the boosting 
algorithms with Naive Bayes classifiers. In the (( Online 
Boosting )) column, any entry with a '+' or '-' after it 
indicates that online boosting performed significantly better 
or worse than batch boosting, respectively. Batch boosting 
significantly outperforms online boosting in many cases-- 
especially the smaller datasets. However, the performances 
of boosting and online boosting relative to a single Naive 
Bayes classifier agree to a remarkable extent. That is, when 
one of them is significantly better or worse than a single 
Naive Bayes classifier, the other tends to be the same way. 

Table 2: Bagging vs. Online Bagging, Naive Bayes 

Dataset Naive Bagging Online 

Promoters 0.8774 0.8354 0.8401 
Balance 0.9075 0.9067 0.9072 
Breast Cancer 0.9647 0.9665 0.9661 
German Credit 0.7483 0.748 0.7483 
Car Evaluation 0.8569 0.8532 0.8547 
Chess 0.8757 0.8759 0.8749 
Mushroom 0.9966 0.9966 0.9966 
Nursery 0.903 1 0.9029 0.9027 
Connect4 0.7214 0.7212 0.7216 
Synthetic-1 0.4998 0.4996 0.4997 
Synthetic-2 0.7800 0.7801 0.7800 
Synthetic-3 0.925 1 0.925 1 0.9251 
Census Income 0.7630 0.7637 0.7636 
Forest Covertype 0.676 1 0.6762 0.6762 

Table 3: Boosting vs. Online Boosting, Naive Bayes 

Dataset Naive Boosting Online 

Bayes Bagging 

Bayes Boosting 
Promoters 0.8774 0.8455 0.71 36- 
Balance 0.9075 0.8754 0.8341- 

German Credit 0.7483 0.735 0.68 79- 
Car Evaluation 0.8569 0.9017 0.8967- 
Chess 0.8757 0.9517 0.9476- 
Mushroom 0.9966 0.9999 0.9987- 
Nursery 0.903 1 0.9163 0.9118- 

Synthetic-1 0.4998 0.5068 0.5007- 
Synthetic-2 0.7800 0.8446 0.8376- 

Breast Cancer 0.9647 0.9445 0.9573+ 

Connect4 0.7214 0.7197 0.7209 

Synthetic-3 0.925 1 0.9680 0.9688 
Census Income 0.7630 0.9365 0.9398 
Forest Covertype 0.676 1 0.6753 0.6753 

Table 4 shows the results of running bagging with 
MLPs. The entries for bagging shown in boldfacehtalics 
i n d i c a t e  t h a t  b a g g i n g  s i g n i f i c a n t l y  
outperformedhnderperformed relative to the batch MLP. 
The entries for online bagging shown in boldface/italics 
indicate  that  on l ine  bagging  significantly 
outperformedunderperformed relative to the online MLP. 
The entries for online bagging with a '-' after them indicate 
times when it performed significantly worse than batch 
bagging. The online MLP always performed significantly 
worse than the batch MLP ; therefore, it is not surprising 
that online bagging often performed significantly worse 
than batch bagging. However, online bagging did 
significantly outperform online MLPs most of the time. 

Table 5 gives the results of running boosting with 
MLPs. Entries in the online MLP and boosting co l~mn 
that are given in boldfacehtalics indicate that it 
significantly outperformed/underperformed relative to batch 
MLPs. Entries in the online boosting column given in 
boldfacehtalics indicate times when it significantly 
outperformedunderperformed relative to the online MLP. 

Entries with a '-' after them indicate times when 
online boosting performed significantly worse than batch 



boosting. Clearly, the significant loss in using an online 
MLP instead of a batch MLP has rendered the online 
boosting algorithm significantly worse than batch boosting. 

Table 4: Bagging vs. Online Bagging, MLPs 

Dataset MLP Online Bagging Online 

Promoters 0.8982 0.8036 0.9036 0.7691- 
Balance 0.9194 0.8965 0.9210 0.9002- 
Breast 0.9527 0.9020 0.9561 0.8987- 
cancer 
German 0.7469 0.7062 0.7495 0.7209- 
Credit 

Evaluation 

MLP Bagging 

Car 0.9422 0.8812 0.9648 0.8877- 

Chess 0.9681 0.9023 0.9827 0.9185- 
Mushroom 1.0 0.9995 1.0 0.9988- 
hkiis-sery 0.9829 0.9411 0.9743 0.9390- 
Connect4 0.8199 0.7042 0.8399 0.7451- 
Synthetic-1 0.7217 0.6514 0.7326 0.6854- 
Synthetic-2 0.8564 0.8345 0.8584 0.8508- 
Synthetic-3 0.9824 0.9811 0.9824 0.9824 
“ensus 
h o m e  

Zovertvne 

0.9519 0.9487 0.9533 0.9487- “ 

?orest 0.7573 0.6974 0.7787 0.7052- 
~~~ ~ ~~ 

Table 5: Boosting vs. Online Boosting, MLPs 

Dataset MLP Online Boosting Online 

Promoters 0.8982 0.8036 0.8636 0.6155- 
MLP Boosting 

Balance 0.9194 0.8965 0.9534 0.8320- 
Breast 0.9527 0.9020 0.9540 0.8847- 
cancer 
German 0.7469 0.7062 0.7365 0.6788- 
Credit 

Evaluation 
car 0.9422 0.8812 0.9963 0.8806- 

Chess 0.9681 0.9023 0.9941 0.8954- 
Mushroom 1.0 0.9995 0.9998 0.9993- 
Nursery 0.9829 0.9411 0.9999 0.9445- 

Synthetic-1 0.7217 0.6514 0.7222 0.6344- 
Synthetic-2 0.8564 0.8345 0.8557 0.8117- 
Synthetic-3 0.9824 0.9811 0.9824 0.9583- 
Census 0.9519 0.9487 0.9486 0.9435 
h o m e  

:overtype 

COMect4 0.8199 0.7042 0.8252 0.6807- 

Forest 0.7573 0.6974 0.7684 0.6329- 

4.2 Running Time 

In this section, we report and analyze the running 
times of the batch and online algorithms that we 
experimented with. There are several factors that affect the 
difference between the running times of an online learning 
algorithm and its batch counterpart. Online learning 
algorithms’ main advantage over batch learning algorithms 

is the ability to incrementally update their models with new 
training examples---batch algorithms often have to throw 
away the previously learned model and learn a new model 
after adding the new examples to the training set. This is 
clearly very wasteful computationally and is impossible 
when there are more data than can be stored. Additionally, 
batch bagging must cycle through the dataset at least MT 
times, where Mis the number of base models and T is the 
number of times the base model learning algorithm must 
cycle through the training set to construct one model. 
Therefore, each training example is examined MT times. On 
the other hand, online bagging only needs to sweep through 
the training set once, which means that each training 
example is examined only M times (once to update each 
base model’s parameters). Online algorithms do not require 
storing the entire training set. However, for a fixed training 
set (i.e., one to which new training examples are not 
continually added), batch algorithms sometimes run faster 
than the corresponding online algorithms. This is because 
batch algorithms can often set their model parameters once 
and for all by examining the entire training set at once 
while online algorithms have to update their parameters 
once per training example. 

Table 6: Running times for Naive Bayes and Ensembles. 

Dataset Naive 
Bayes 

Promoters 0.02 
Balance 0 
Breast 0.02 
cancer 
G e m  0 
Credit 
Car 0.04 
Evaluation 
Chess 0.42 
Mushroom 0.38 
Nursery 0.86 
Connect4 6.92 
Synthetic-1 7.48 
Synthetic-2 5.94 
Synthetic-3 4.58 
Census 56.6 
Income 
Forest 106 

Bag Online 
Bag 

0 0.22 
0.1 0.1 
0.14 0.32 

0.14 0.38 

0.34 0.44 

1.02 1.72 
2.14 3:28 
1.82 3.74 
33.98 42.04 
45.6 64.16 
44.78 74.84 
44.98 56.2 
131.8 157.4 

371.8 520.2 

Boost Online 

0.44 0.72 
0.26 0.06 
1.32 0.66 

Boost 

0.7 1.5 

0.88 1.72 

9.42 7.45 
114 11.08 
31.4 20.74 
647 465 
1352 394 
5333 343 
3762 284 
25605 1200 

67611 15638 
Covertype 

The comparison between batch and online boosting 
has the additional factor of the number of base models. 
Batch boosting, when called with the upper limit of M base 
models, can choose to generate fewer models---recall that if 
a model’s error is greater than 0.5, then boosting will 
discard that model and return the ensemble generated so fix. 
Online boosting does not have this luxury because it does 
not know what the final error rates will be for each base 
model. This difference can lead to lower training times for 
batch boosting. However, batch boosting needs to cycle 
through the training set M(T+I) times---each of the A4 base 
models requires T cycles through the training set to learn 
the model and one cycle to calculate the error on the 



training set. Online boosting only requires one sweep 
through the training set. 

Table 7: Running times for MLPs and Bagging. 

Dataset MLP Online Bag Online 

Promoters 2.58 2.34 442.7 334.6 
Balance 0.12 0.14 12.48 11.7 
BreastCancer 0.12 0.18 8.14 6.58 
GermanCredlt 0.72 0.68 73.64 63.5 
Car Evaluation 0.6 0.46 36.86 36.82 
Chess 1.72 1.92 166.8 159.8 
Mushroom 7.68 6.64 828.4 657.5 
Nursery 9.14 9.22 1119 1005 
Connect4 2338 1134 156009 105036 
Synthetic- 1 142.0 149.3 15450 16056 
Synthetic-2 301 124.2 24447 13328 
Synthetic-3 203.8 117.5 17673 12469 
Census Income 4221 1406 201489 131135 
Forest Covertype 2071 805.0 126519 73902 

MLP Bag 

Table 8: Running times for MLP and Boosting. 

Dataset MLP Online Boost Online 
MLP Boost 

Promoters 2.58 2.34 260.9 83.18 
Balance 0.12 0.14 1.96 4.18 
Breast 0.12 0.18 2.56 2.28 
Cancer 
Gellllan 0.72 0.68 11.86 23.76 
Credit 
car 0.6 0.46 44.04 9.2 
Evaluation 
Chess 1.72 1.92 266.7 32.42 
Mushroom 7.68 6.64 91.72 53.28 
Nursery 9.14 9.22 1537 160.2 
Connect4 2338 1134 26461 58277 
Synthetic-1 142.0 149.3 6431 8806 
Synthetic-2 301 124.2 10414 5644 
Synthetic3 203.8 117.5 9262 1652 
Census 4221 1406 89608 52362 
h o m e  
Forest 2071 805.0 141812 74663 
:overtype 

Table 6 shows the running times for Naive Bayes as 
vel1 as all the ensemble learning algorithms using Naive 
3ayes classifiers as base models. The running time for 
anline bagging is generally somewhat greater than for batch 
bagging. The total number of times each training example 
is examined is the same for both batch and online bagging 
with Naive Bayes classifiers. However, online bagging 
requires a greater number of procedure calls to the learning 
algorithm (MT as opposed to M), which may explain the 
running time difference. On the other hand, online boosting 
has a clear running time advantage over batch boosting. 
Online boosting’s fewer sweeps through the dataset clearly 
outweigh any reduction in the number of base models 
returned by batch boosting. Tables 7-8 give the running 
times for MLPs and the batch and online ensemble 

algorithms. This time, both online bagging and online 
boosting are faster than their batch counterparts. The batch 
algorithms are slowed down because each MLP requires ten 
cycles through the dataset. 

5 Conclusions 
In this paper, we discussed online versions of 

bagging and boosting and gave both theoretical and 
experimental evidence that they can perform comparably to 
their batch counterparts while running much faster. In this 
paper, we experimented only with batch datasets, i.e., one 
is not concerned with concept drift. Online algorithms are 
useful for batch datasets that cannot be loaded into memory 
in their entirety. We plan to experiment with online 
domains---domains where data arrive continually and where 
a prediction must be generated for each data point upon 
arrival. In these situations, the learner may be given 
immediate feedback (such as a calendar assistant which may 
suggest a meeting time which the user can either select or 
change) or may obtain feedback periodically. The time- 
varying nature of such datasets make them more difficult to 
deal with but more needy of online ensemble learning 
algorithms. 
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